

Representing Shape Collections with Alignment-Aware Linear Models

Romain Loiseau^{1, 2}

Tom Monnier¹

¹LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France ²LASTIG, Univ. Gustave Eiffel, ENSG, IGN, F-94160 Saint-Mande, France

Representing Shape Collections

Exploring large shape collections?

Exploring large shape collections?

Summarizing large shape collections

- Understanding collections
 - Clustering
 - Semantic segmentation
- In an unsupervised manner
- With easy annotation and visualisation

SAPERET

Exploring large shape collections?

Summarizing large shape collections

- Understanding collections
 - Clustering
 - Semantic segmentation
- In an unsupervised manner
- With easy annotation and visualisation

Common problems/Issues

- Distance between shapes?
- Unaligned shapes?
- Average of shapes?

Romain Loiseau

3DV 2021

Linear Shape Models

Linear Shape Models

- a center shape $c \in \mathbb{R}^{M \times 3}$
- an alignment network A
- displacement fields $v_i \in \mathbb{R}^{M \times 3}$ $\mathcal{R}_{\mathsf{full}}(x) = \mathcal{A}(x) \left[c + \sum_{i=1}^{D} a_i \cdot v_i \right]$

ModelNet10 ABC

Unsupervised loss

$$\mathcal{L}(\mathcal{R}) = \min_{k=1}^{K} d\left(x, \mathcal{R}^{k}(x)\right)$$

Linear family parametrization

- Pointwise: $v \in \mathbb{R}^{D \times (M \times 3)}$
- Implicit: $[v_i]_p = \mathcal{V}_i([c]_p)$

•
$$\mathcal{V}_i^k : \mathbb{R}^3 \mapsto \mathbb{R}^3$$

Method overview

Unsupervised clustering loss

- $\mathcal{L}(\mathcal{R}) = \min_{k=1}^{K} d(x, \mathcal{R}^{k}(x))$
- Curriculum training \mathcal{R}_{proto} ; \mathcal{R}_{align} ; \mathcal{R}_{full}

Effect of alignment between shapes

Linear Shape Models

- $\mathcal{R}_{\text{proto}}(x) = c$
- $\mathcal{R}_{align}(x) = \mathcal{A}(x)[c]$
- $\mathcal{R}_{\text{full}}(x) = \mathcal{A}(x) \left[c + \sum_{i=1}^{D} a_i \cdot v_i \right]$

Clustering and segmentation

Visualize large collections of shapes

• Unsupervised clustering with a single clustering loss

of shapes utput Unsupervised clustering with a single clustering loss nput Low shot segmentation Easy manual annotation or tput using a few samples to annotate linear shapes R 🖗 🔊 nput From a single annotated model we can propagate labels in 🏟 🖍 🏟 🖍 State of the art on low-shot

segmentation

Conclusion

Contributions

- Unsupervised method to represent large point cloud collections
- Extension of the DTI clustering framework to learn linear shape models
- State-of-the-art few-shot segmentation performance

Thanks for your attention!

École des Ponts

ParisTech

Romain Loiseau

8 / 8