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Visualize and understand large collections of shapes
Introducing Deep Linear Shapes

Applications: clustering and segmentation

Exploring large shape collections?
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Exploring large shape collections?

Summarizing large shape
collections
• Understanding collections

• Clustering
• Semantic segmentation

• In an unsupervised manner
• With easy annotation and

visualisation

Common problems/Issues
• Distance between shapes?
• Unaligned shapes?
• Average of shapes?
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Linear Shape Models
Linear Shape Models
• a center shape c ∈ RM×3

• an alignment network A
• displacement fields vi ∈ RM×3

Rfull(x) = A(x)
[
c +

∑D
i=1 ai · vi

]
Unsupervised loss
L(R) = minKk=1 d

(
x ,Rk(x)

)
Linear family parametrization

• Pointwise: v ∈ RD×(M×3)

• Implicit: [vi ]p = Vi ([c]p)

• Vk
i : R3 7→ R3

ModelNet10 ABC
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Method overview

Unsupervised clustering loss
• L(R) = minKk=1 d

(
x ,Rk(x)

)
• Curriculum training Rproto;Ralign;Rfull
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Effect of alignment between shapes
Aligned ModelNet10 Un-aligned ModelNet10
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Linear Shape Models

• Rproto(x) = c

• Ralign(x) = A(x) [c]

• Rfull(x) = A(x)
[
c +

∑D
i=1 ai · vi

]
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Clustering and segmentation

Visualize large collections
of shapes
• Unsupervised clustering with a

single clustering loss

Low shot segmentation
• Easy manual annotation or

using a few samples to
annotate linear shapes

• From a single annotated model
we can propagate labels

• State of the art on low-shot
segmentation
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Conclusion

Contributions
• Unsupervised method to represent large point cloud collections
• Extension of the DTI clustering framework to learn linear shape models
• State-of-the-art few-shot segmentation performance

Thanks for your attention!
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